L p Error estimate for minimal norm SBF interpolation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The L Norm Error Estimate for the Div-curl Least-squares Method for 3d-stokes Equations

This paper studies L2 norm error estimate for the div-curl leastsquares finite element method for Stokes equations with homogenous velocity boundary condition. The analysis using a different way from that in [11] shows that, without the divergence of the vorticity, the L2 norm error bound of the velocity is O(h 3 2 ) in the standard linear element method. AMS Subject Classification: 65N30

متن کامل

Optimal Anisotropic Meshes for Minimizing Interpolation Errors in L-norm

In this paper, we present a new optimal interpolation error estimate in Lp norm (1 ≤ p ≤ ∞) for finite element simplicial meshes in any spatial dimension. A sufficient condition for a mesh to be nearly optimal is that it is quasi-uniform under a new metric defined by a modified Hessian matrix of the function to be interpolated. We also give new functionals for the global moving mesh method and ...

متن کامل

A Multivariate Form of Hardy's Inequality and L P -error Bounds for Multivariate Lagrange Interpolation Schemes

The following multivariate generalisation of Hardy's inequality, that for m ? n=p > 0

متن کامل

L∞-error Estimate for a System of Elliptic Quasivariational Inequalities

whereΩ is a bounded smooth domain ofRN ,N ≥ 1, with boundary ∂Ω,ai(u,v) are J-elliptic bilinear forms continuous on H1(Ω)×H1(Ω), (·,·) is the inner product in L2(Ω), and f i are J-regular functions. This system, introduced by Bensoussan and Lions (see [3]), arises in the management of energy production problems where J-units are involved (see [4] and the references therein). In the case studied...

متن کامل

Complex Nonconvex l p Norm Minimization for Underdetermined Source Separation

Underdetermined source separation methods often rely on the assumption that the time-frequency source coefficients are independent and Laplacian distributed. In this article, we extend these methods by assuming that these coefficients follow a generalized Gaussian prior with shape parameter p. We study mathematical and experimental properties of the resulting complex nonconvex lp norm optimizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2013

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2013-510